Video Wall of Terror

This weekend, I helped decorate for a Halloween Party at my sister’s house. There’s an odd hallway that connects their main large public room to the rest of the house. It’s used for storage, and has shelves on both sides.

This year, I decided to decorate that area by creating a video wall effect. Something like a Television Control Room of Terror!

To start with, I simply filmed my brother-in-law with a video camera – only from WAY TOO CLOSE! I shot macro video of his eye and mouth. Then I edited the footage to create a custom looping DVD.

In the hallway, I set up multiple monitors. These are old monochrome standard definition monitors that were on their way to the recycling center. They were professional monitors, which means that they can pass a video signal through from one monitor to another, making it easy to daisy chain several monitors.

Next to the monitors, I set up three DVD players (including one car DVD player – hey I use what I got!) to play the three different custom DVDs – Right Eye, Left Eye, and Mouth. Each of the three videos is a different length, so they will continue to drift out of sync. That way, as they loop, the visuals are a continuingly changing experience through the whole evening.

Above the monitors, I set up a video camera on a tripod and fed it to some of the monitors. That way, when party-goers look at the monitor, they also see themselves. Having feedback on some of the monitors adds a sense of interactivity to the project.

After the monitors and DVD players were all set up, I covered the rest of the shelving with black paper. In a dark hallway, lit only be black lights, it’s a great effect of creepy images floating in the hall.

If you want more details on this project, I made a full step-by-step write-up on Instructables.

$5 Upcycled Desk Clock

Last summer I came across a collection of car parts at a garage sale; instrument clusters, lights, gauges, and some digital clock displays.  For $5, I became the proud owner of a JECO Japan, vacuum fluorescent clock display.  The plastic housing held all the clock electronics, membrane buttons for setting the time, and a four-pin connector.  After powering it up, I realized one of the pins could be used to dim the display, which is a pretty nice feature to have.

I’ve worked on it off and on for a few months, but finally decided to finish it this weekend.  On Saturday, I tweaked some dimensions and laser-cut the final enclosure.  I wasn’t happy with the button holes and text I had on the front of the first iteration, so I got rid of them for the final.  You can adjust the time by slipping a jeweler’s screwdriver or a paper clip through a gap in between the plexiglass sides and pressing the buttons to add hours or minutes. 

I added a small single-pole, double-throw toggle to switch between bright and dim, then soldered the connections before closing it up.  The whole thing is clamped together by a single #10-32 machine screw and a wingnut.  The final result doesn’t look half bad.

2014 RPM Challenge: Accepted!

Today is the first day the 2014 RPM Challenge, which is the National Novel Writing Month of music!  The goal of the RPM challenge is to compose and record an entire album during the month of February! I accepted the challenge by dusting off my Cacophonator and Mohogonator, and got to work making music after dinner today. As today also marks the 50th anniversary of the Beatles invasion, this project drew inspiration from the Beatles’ back catalog!

RPM_Challenge

I used the dynamic duo of Cacophonator and Mohogonator with Auditionator (i.e. Adobe Audition) to record a session for about 12 minutes at a blazing fast 192kHz sample rate.  After chopping the recording into individual tracks, I digitally slowed them down to the customary rate of 44.1kHz, thereby expanding the work to its final ~45 minute length.  For inspiration while I was recording, I listened to Beatles songs sped up to 435% (which is 192/44.1) of their customary speed.  My tracks needed a bit of post-processing: on some of them I chose to bump the pitch back up an octave or two and add “Beatle Fades” to the beginning and end.  Anyway, within twenty minutes after the recording was made, I had edited the songs and uploaded them.  You’ve read that correctly, in less time than it takes to listen to the pieces, they were composed, recorded, processed, mastered, named and uploaded.

Today is also the 50th anniversary of the first Beatles song hitting #1 on the US pop charts: “I Wanna Hold Your Hand.” This whole project was inspired by this apparent coincidence in timing, and each track was directly inspired by listening to the sped-up Beatles original.  I hope you enjoy each of the 11 tracks I created!

While My Cacophonator Gently Weeps
Got To Get You Into My Cacophonator
All You Need Is Cacophony
With A Little Help From My Cacophonator
Sgt. Cacophonator’s Lonely Hearts Club Band
Cacophonator Came In Through The Bathroom Window
Lucy In The Cacophonator With Diamonds
Got To Get Cacophonator Into My Life
A Hard Day’s Cacophonation
You’ve Got To Hide Your Cacophonator Away
Cacophonator Wants to Hold Your Hand

It may be more convenient to listen to the entire album: “Cacophonator 2: Electric Boogaloo; A Love Tragedy in 11 Parts” on the RPM Challenge site’s Cacophonator page. Just scroll down to “My Player.”  There is plenty of February left: I encourage everyone to participate!

Weekend Project — Timed Outlet

I have a cordless drill with rechargeable batteries.  The batteries charge completely in about 20 minutes.  They are not supposed to stay on the charger for longer than that.  However, unless I am standing right there after the charging time, I forget to take the batteries off of the charger.

To fix this problem, I made a timed duplex power outlet out of a countdown timer and a duplex outlet.  I plug the timed outlet into a 120v outlet.  Then, plug the battery charger into the duplex outlet attached to the timer.  Finally, I set the timer to 20 minutes and walk away.  (There are more details about the parts and assembly on the Instructable.)

One problem I had is that the faceplate that came with the timer was too wide.  It covered the timer and a bit of the duplex outlet.  I found a Thing on Thingiverse that uses the Customizer to custom build faceplates that cover from one to five outlets with any configuration.  I used it to make a custom faceplate for two outlets with a single hole for the timer on the left-hand side and holes for a duplex outlet on the right-hand side.  I printed it on the Makerbot 3D printer using black PLA filament.  I used 100% infill to make it solid and durable.

 One problem I had with the print was that the raft stuck to the surface in some spots and would not come off.  So, there are a few rough looking spots.  Another problem is that the hole for the timer knob was a bit too small.  I had to drill it out slightly bigger.

 After attaching the new faceplate, I used my label maker to print the numbers for the dial.

That’s it.  No more ruined batteries due to overcharging.  And, it’s portable!

timerOutlet

 

Home Environmental Sensor Array (Phase 1) Finished

After six months of working on this on-and-off, I installed my home environmental sensor array (HESA) in my basement. Basically, it looks for water in the basement. If it detects water, it shuts off power to my water softener (assuming that the softener is or will, dump more water into the basement), and sends me an email.  The HESA has a Raspberry Pi to detect water and control the PowerSwitch Tail relay.  It also connects to the internet via my home network.

HESA

This is phase one of my HESA project. The device I built in this phase will only detect water. Future phases will add the capability to detect more things and be more interactive.

This is basically, my first real Maker project.  I learned or practiced many Maker skills like soldering, basic electronics, and CNC routing. I made my own PCB (that I did not end up using). I did some basic metal work with a jig saw. I learned how to use several software tools for CAD and design. I learned to program in Python. And I had a lot of fun doing it.

Several Makers at the Milwaukee Makerspace helped me with this project. There is no way I could have built this without them. Thanks to anyone who took time to help me move this project forward.

Wiki project page

Blog